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Abstract-Elasticity, rigid-plasticity and elasto-plasticity are the simplest constitutive models used to describe the 
initiation and evolution of faulting. However, in practice, the limits of their application are not always clear. In this 
paper, we test the behaviour of these different models using as examples tectonic problems of indentation of a die, 
compression with basal shear, bending of a plate and normal faulting around a dike. By comparing the results of 
these tests, we formulate some guidelines that may be useful for the selection of an appropriate constitutive model of 
faulting. The theory of elasticity reasonably predicts the initiation of the fault pattern but gives erroneous results for 
large strains. The theory of rigid-plasticity is more appropriate for large deformations, where the geometry of faults 
can be found by the method of characteristics. This method works well for zones of failure that are not severely 
constrained by elastic material outside, e.g. when faults are connected to the free-surface, a viscous substratum or a 
zone of weakness. Non-associated elasto-plasticity is the most complete theory among those considered in this 
uaner. It describes the evolution of faults from the initiation of localized deformations to the formation of a 
complicated fault network. 0 1998 Elsevier Science Ltd. 

INTRODUCTION 

It is important for geologists to have a simple constitutive 
model that describes the initiation and evolution of 
faulting. The field of mechanics offers some idealized 
models for the behaviour of materials during faulting 
such as elasticity, rigid-plasticity and elasto-plasticity. 
These theories are widely used, and sometimes misused, 
in structural geology. There is a need for a clear 
demonstration of the abilities and limitations of these 
constitutive models in order to develop intuition about 
fault prediction. Progress in this field can be made by 
modelling of simple, idealized tectonic situations such as 
thrusting, bending or indentation by means of each 
theory. 

There are several mechanical approaches to the 
prediction of the location and geometry of faults. The 
simplest way is to calculate the stress field in the region of 
interest by means of the theory of elasticity (Anderson, 
1951; Hafner, 1951; Sanford, 1959; Spencer and Chase, 
1989; Yin, 1989; Parsons and Thompson, 1993). The 
faults are predicted to be at a certain angle from the 
direction of principal stresses where the condition for 
fault friction is satisfied. This simple approach may give 
correct first-order predictions for fault initiation. How- 
ever, when it is not used carefully, it gives unreasonable 
results (Buck, 1990; Wills and Buck, 1997). Furthermore, 
the weakness of this method is that faulting changes the 
predicted elastic state, and this theory does not take into 
account the conditions necessary for fault slippage. 

A more advanced approach involves the use of 
different theories of plasticity. The classical ‘metal’ 
rigid-plasticity, which can be treated analytically in 
many cases, provides a stress distribution that satisfies 
the failure criterion and the kinematically admissible 
velocity field, where faults can be interpreted as velocity 

discontinuities (OdC, 1960). This approach was used for 
fault prediction in thrusts and accretionary prisms 
(Stockmal, 1983; Dahlen, 1984), for rifting (Lin and 
Parmentier, 1990) and continent collision (Tapponnier 
and Molnar, 1976; Regenauer-Lieb, 1996; Regenauer- 
Lieb and Petit, 1997). One of the drawbacks of this 
method is the uncertainty in the choice of the geometry of 
the failure zone, due to the assumption that the material 
outside the plastic zone is rigid. The other problem is that 
the kinematics of faulting in pressure-dependent rocks is 
unrealistic. 

The theory of elasto-plasticity with realistic kinematics 
of failure (so-called ‘non-associated’ flow rule) is the most 
appropriate theory for faulting. It has taken a long time 
for non-associated plasticity to be developed and 
accepted in mechanics (Mandel, 1966; Salenqon, 1974; 
Rudnicki and Rice, 1975; Mandl et al., 1977; Vermeer 
and de Borst, 1984; Vardoulakis and Salem, 1995). 
Analytical solutions are available only for simple cases 
such as a single shear band (Vermeer, 1990; Byerlee and 
Savage, 1992), whereas geological problems require 
direct numerical simulation (Hobbs and Ord, 1989; 
Cundall, 1990; Hobbs et al., 1990; Poliakov et al., 1994; 
Poliakov and Herrmann, 1994; Hassani and ChCry, 1996; 
Hassani et al., 1996; Leroy and Triantafyllidis, 1996). 

This paper tries to demonstrate that the selection of the 
appropriate constitutive behaviour depends on whether 
one needs to describe the initiation of faulting, the 
approximate geometry of the failure zone or the evolu- 
tion of individual faults in time. The first part of the paper 
is devoted to a review of the theory, considering the 
extent to which faulting can be predicted by the theories 
of elasticity, ‘associated’ rigid-plasticity and ‘non-asso- 
ciated’ elasto-plasticity. Each approach is illustrated with 
the example of an indenter (flat die) penetrating into a 
half-space. The second part of the paper treats the 
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seemingly simple cases of compression with basal shear, 
bending and faulting around a dike. Based on the 
experience gained from these cases, some simple rules of 
thumb for fault prediction are provided, and the 
limitations of each approach are discussed in the third 
part. This study is meant to be a demonstration of the 
applicability of the theory of elasto-plasticity for the 
geological community, and an introduction to some 
geological problems for mechanicists. 

THEORETICAL BACKGROUND WITH AN 
EXAMPLE OF INDENTATION IN A HALF- 

SPACE 

Andersonian and elasticity theories 

A great advance in the application of basic mechanics 
to geological problems was accomplished by Anderson 
(1951). made two about the of 
faults the earth. he proposed faults form 
slip on which are at 45” to the 

compressive stress 1). The stress T 
satisfies the criterion: 

r - tan($) + C, 

where $I the angle friction, cr,, the normal 
acting on plane, and is the 

Second, he that all principal stresses 
either horizontal vertical. This predicts the 

types of faults, thrust, and 
normal depending on of the 
stresses is Andersonian predictions the 
orientation each type fault are with 
many (e.g. Sibson, 

Following the of Anderson, people tried 
apply the fracture criterion more 
complex fields to the evolution fault 
geometries large displacements. ‘classical’ 
approach been to lithospheric stress 
due to or other from elasticity 
and then that faults oriented at angle 
k(4.5” 4/2) to most compressive This idea 

Fig. 1. Prediction of faulting in an elastic material. Potential planes of 
failure are oriented at + (45” -d/2) to the maximum pressive stress, 01, 

for which equation (I) is satisfied. 

was applied to the prediction of faulting due to 
compression with a basal shear (Hafner, 1951; Yin, 
1989, 1993), flexure of the crust (Sanford, 1959; Spencer 
and Chase, 1989) and magmatism in extensional stress 
field (Parsons and Thompson, 1993). Some of these 
solutions will be shown in the next part of the paper. 
Criticism of the use of this approach for certain cases is 
provided by Buck (1990) and Wills and Buck (1997). 

Pros and cons qf’the ‘elastic’ approach. This method of 
fault prediction is appealing for the following reasons: 

(1) It is consistent with observations of the fault 
orientations at large tectonic scales (e.g. Sibson, 1994). 

(2) Elastic analytical solutions are relatively simple 
and intuitive. They are useful for a crude estimation of 
where faults can appear. 

(3) This method should predict fairly well the initial 
failure zones that can persist during large deformations, 
if fault strength rapidly degrades. 

However, there are several reasons for why the results 
from these models may be misleading. 

(1) As soon as material reaches a critical state (failure) 
and faults develop in one area, the stress distribution is 
changed from the subcritical state predicted from 
elasticity theory. 

(2) This approach completely ignores the kinematics 
of the problem. The predicted direction of failure planes 
may be incompatible with the boundary conditions. 

(3) Even if the slip along the surface of initial failure is 
kinematically admissible, it may require more energy to 
slip along the ‘Andersonian’ fault than along the other 
fault orientations, which are not favored initially (Buck, 
1992; Forsyth, 1992). 

Because it is not possible to resolve these issues for the 
general case, we have found it constructive to focus on 
concrete examples of fault initiation. As a benchmark, we 
have chosen the problem of indentation of a flat die in the 
half-space, because analytical solutions for elastic and 
plastic material are available, and this problem is 
numerically tractable. 

Indentation in the half-space. Consider the example of a 
frictionless die pushed into an elastic half-space (Fig. 2a). 
The distribution of stresses can be found analytically for 
the case in which the die is replaced by a strip of normal 
stress at the top of the domain (Crouch and Starfield, 
1990). The contours of maximum shear stresses form 
crescents that terminate at the corners of the die, and may 
represent the boundary between intact and failed 
material. The region where the limiting stress is above 
3 MPa is shown, together with potential trajectories of 
failure planes, for an indentation load y = 15 MPa. 

Theory of’rigid-plasticity 

Plasticity theory is a more suitable approach for 
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Elastic solution , q4 = 0 

I ‘=l”“‘i 

Rigid-Plastic solution , # = 0, $ = 0 

Rigid-Plastic solution , C$ = 0, qb = 0 

Rigid-Plastic solution , g5 = 30,~) = 30 

Fig. 2. Failure zones due to vertical stress q applied to elastic (a) and rigid-plastic (bcl) half-space. (a) Trajectories of potential 
failure are shown as solid lines inside the domain where the maximum shearing stress k is above 3 MPa. (b) Prantdl’s solutions 
for slip-lines in a rigid-plastic material with pressure-independent yield criterion (# = 0). The limit stress q is (~++)k. 
(c) Alternative Hill’s solution illustrates the non-uniqueness of plastic zone configuration for the same limiting stress. (d) Slip- 
lines in a pressure-dependent rigid-plastic material with friction angle and dilatancy 4 = $ = 30”, where limiting q is z 3OC, and 

C is cohesion. 
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prediction of faulting because it takes into account 
limiting (yield) stress and defines ‘slip-lines’, which can 
be interpreted as tectonic faults (Ode, 1960). 

Here, we briefly discuss two main points concerning 
basic rigid-plasticity (Hill, 1950; Johnson et al., 1970; 
Backhofen, 1972; Johnson and Mellor, 1983). First, due 
to the complexity of solutions for elasto-plastic rheology, 
material is assumed to be rigid-plastic, or elasto-plastic 
with an infinite elastic modulus. Although this assump- 
tion may be justified if elastic strains that are small 
compared to plastic ones are disregarded, it may produce 
serious errors for certain problems. Secondly, the 
distribution of stresses in rigid zones is not determined, 
nor is the boundary between plastic and rigid zones, 
which should be at the yield stress. 

Thus, the configuration of plastic zones, and stress and 
velocity fields are non-unique and need to be chosen 
before the problem can be solved. The choice of plastic 
zones is somewhat arbitrary, but should satisfy certain 
criteria (described below). When the configurations of the 
plastic zone are chosen, the stress distribution and 
velocity field in this zone can be found. 

The rheology of rocks can be classified into those 
where the yield stresses depend on pressure and those 
where they do not. The theory of plasticity can be applied 
for either case. We start with the case of pressure- 
independent plasticity. The plane-strain approximation 
is used for all problems considered below. 

Pressure-independent plasticity. Plastic material yields 
when the maximum shear stress, z, reaches a critical 
value, k, which is a material constant, 

where gxx, zxy are components of the 
stress tensor. yield stress assumed to 

of and does change with 
(perfect plasticity). The surface in 

space (on, is shown Fig. 3(a), is the for 
Tresca Von Mises in plane problems. 

The of two of equilibrium in the 
of body reduces to 

(2) and give a of three 
with three unknowns auY, zeYl.. the boundary 

involve stresses, such problem is 
determined; velocities be found afterwards. 
flow is to be 

aY 

where and rY components of the velocity In 
an material, the of the axes 
of and plastic strain-rate coincide (hypothesis 

of Saint-Venant); thus 

where (x71) the angle the Xaxis direction 
of Fig. 3(b), $, t”,,, are the of 

strain rate If the of stresses 
known, then v, vY can found from 

(4) and 
The condition of between strain-rate 

stress tensors be also as the 
deviatoric stress sii plastic strain-rate 6, 

s. Rs, Sj, aQ + (6) 

where is the coefficient the proportionality 
pressure is = -(oxx+ for the strain pro- 

The relation is shown graphically Fig. 3(a). 
intersection of the stress envelope Mohr 

circle the of the of failure. 
can define stress acting this plane a vector the 

(oil, space. We the vector deviatoric stress s’ 
is orthogonal the yield surface. vector of 
strain rate can be parallel to s’ 

because the coaxiality plastic strain and stress 
(5)). 

It be seen Fig. 3(a) the plastic vector is 
to yield surface. condition of 

or associativity, is the consequence of 
the fundamental ‘maximum principle in theory 
of plasticity (Hill, 1950). 

maximum shear and strain are oriented 
45” to axes of stresses, forming angle Q 

the X (Fig. 3b). are called 
because can occur along these directions. 
form two families curves shown c[ and 
lines in 3(c). 

It be shown 1950) that system of 
(2) and exhibits the fundamental property 

along the slip-lines, quantities are conserved: 

+ 2k6J const on CI line 

- 2kB const on p line, 

where k maximum shear and p the pressure 
3~). These are called Hencky equa- 

It also be shown equation (2) 
condition (3) and curves 
are slip lines 1950). The solution a given 
plastic problem requires of slip-line 
field. can be by propagation from the 
boundary stresses are defined. in a 

case, it required to done numerically, for 
cases, it be done analytically. For example, 

the boundary straight and stresses at 
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\ 
P-2k 8=Const 

Vn- =Vn+ 

VT-# VT’ 

fl-fl*e 

d) 
Fig. 3. (a) Limiting (yield) stres: for pressure-independent material with incompressible plastic flow 4 = (I/ = 0 in the (5, CT,,) 
stress space. Plastic strain rate cp is shown inside a grey circle because it is defined in another space. It is coaxial to the 
deviatoric shear stress s’(equation (6)). (b) Direction of maximum shearing stress makes an angle 6’ to the x axis and 45” to 0,. 
(c) Directions of maximum shear stress and strain form two sets of perpendicular c( and /? slip-lines along which equation (7) is 
satisfied. (d) Properties of velocity field: normal velocity is continuous across a slip-line, tangential velocity can be 

discontinuous and can be interpreted as a fault. 

boundary are zero, then the adjacent plastic zone is a 
triangle where the slip-lines are straight lines. 

The velocity field has a similar property as the stress 
such that 

du - vd0 = 0 on an c( line 

dv + ud8 = 0 on a p line, 

where u and v are velocity along slip-lines (Fig. 3~). These 
equations are attributed to Geiringer. They are nothing 
more than the statement that the rate of extension along 
any slip-line is zero. A fundamental property of these 
equations is that velocity u can be discontinuous across 
the c( line and velocity v discontinuous across the /I line. In 
other words, the normal velocity is continuous across the 
slip-line, while the tangential velocity can be discontin- 
uous (Fig. 3d). This discontinuity can be interpreted as a 
fault (Ode, 1960). The frontier between plastic and rigid 
zones also should be a slip-line, separating moving from 
motionless material. 

Indentation problem and non-uniqueness of the solution. 
The classical example of rigid frictionless die indenting in 
a half-space can be readily solved by means of rigid- 
plasticity theory. Figure 2(b) shows the construction of 
slip-lines proposed by Prantdl. Suppose that distribution 
of stresses is uniform under the indenter. The surface of 
the half-space is flat and shear stresses are’zero. Thus, 
slip-lines are straight, tilted at 45” to the surface and form 
three triangles AFG, ACB and BDE. Two curved 

domains (AFC and BCD) are bridging these triangles. 
The triangles BDE and AFG are under horizontal 
compression, and triangle ABC is under horizontal 
tension. The M slip-line makes an angle 8, = -x/4 to the 
free-surface and equation (7) yields, 

kx 
p1 -r=6=const=&, 

where p1 is the undetermined pressure inside AABC. In 
ABDE, the following relations 

are satisfied along the same a slip-line. As the parameter 5 
should be constant along an CI line, 5, = & and the 
pressure under the die is pl = k(n: + 1). The difference 
between the pressure and vertical stress is k, and the 
limiting stress q applied to the die is 

q = k(x + 2). (8) 

The kinematics of the plastic flow are simple: triangle 
ABC moves downwards, with velocity of the die V. The 
tangential component of velocity is discontinuous along 
line BC, while the normal component of velocity is 
continuous and is V/J(2). Along CD, the tangential 
component of velocity is discontinuous, and the normal 
component is zero. The velocity in triangle BCD is v = 0 
and u = V/,,/(2). The domain BDE slips as a solid block in 
the direction DE at the same velocity, V/,/(2). 

An alternative solution is that of Hill and is shown in 
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Fig. 2(c). One can also construct a number of slip-line 
fields which are a mixture of these two solutions. The 
limiting stress 4 =k(n + 2) is the same for all these 
solutions. 

The geometry of plastic zones is non-unique because 
the stress is not defined in rigid zones. Thus, it is necessary 
to make an additional verification of the solution by 
doing the following. 

(I) Check that the velocity field is kinematically 
admissible, e.g. that slip-lines (or discontinuity line) do 
not terminate at a boundary with a rigid zone. 

(2) Check that the dissipation of plastic flow r~$$ is 
not negative. 

(3) Choose the solution with the minimum limit load. 
(4) Check that the stress in the rigid zones does not 

exceed the yield stress. This condition can be verified by 
propagation of plastic fields in the rigid zones. 

However, these additional constraints may not be 
enough to distinguish between different solutions, as 
was the case for the solutions of Hill and Prantdl. A 
useful approach is to try to construct the geometry of the 
plastic zone by taking into account the theory of 
elasticity, or conduct a direct laboratory or numerical 
experiment, as will be shown below. 

Mohr-Coulomb ‘ussociated’ plasticity. Pressure- 
dependent (Mohr-Coulomb) plasticity is more 
appropriate for the description of brittle failure in rocks 
and in soils. The yield stress envelope is shown in Fig. 
4(a), where C is cohesion, 4 is friction angle and 
H= Cco@. The yield condition expressed in terms of 
principal stresses is 

(a, - ~3) = -sin(4). (CT, + 03 - 2H). (9) 

This is equivalent to equation (1). Equation (9) and the 
two equilibrium equations in equation (2) form a system 
of three equations with three unknowns as in the previous 
case. 

The failure planes are inclined at + (rc/4 - $/2) angles 
to the direction of the principal stress gl (Fig. 4b). These 
lines are also the slip-lines along which the following 
conditions are met (Salencon, 1974): 

log(H + p) + tan 4 .28 = const on an x line 

log(H + p) - tan 4 .28 = const on a p line. 
(10) 

As in the theory of pressure-independent plasticity, the 
principal directions of strain-rate and stresses are 
assumed to coincide. The plastic strain rate vector $ is 
parallel to the deviatoric stress vector s’ (Fig. 4a). Thus, 
the plastic strain rate is associated with the yield surface. 
The relation between the shear zf and the volumetric i{ 
components of the plastic strain rate at the plane of 
failure is, 

Cf = Et tan(4), (11) 

where i$ = l/2(& + i$). Thus, the flow along the failure 
plane is not incompressible as was assumed in the 
analysis of pressure-independent plasticity, but increases 
in volume with an angle of dilatation $ equal to the 
friction angle 4, where $ is defined as sin($)=i{/C{ 
(Vermeer and de Borst, 1984). This is the result of the 
‘associated’ plastic flow rule and can cause serious 
problems in applications to real materials, because this 
condition is not physical. 

Let us consider the problem of indentation in a 
pressure-dependent Coulomb material. Figure 2(d) 
shows that the construction of slip lines is similar to 
Prantdl’s solution. However, the characteristics are 
oriented at k(rr/4- 4/2) to the maximum compressive 
stress. One can see that slip-lines initiate at the die with a 
slope of 60”, and terminate at the surface on the sides of 
the indenter at 30”. Using equation (lo), we find the 
following relation for the limiting load q, 

q = Ccot$). ( 1 + sin 4 en ,a,, q5 

I - sin 4 
-1 

> 
(12) 

Taking the value, $ = 30”, we have q z 30C. This case will 
be verified numerically and compared with others in the 
next section. 

Pros and cons qf the rigid-plastic approach. The 
advantages of rigid-plasticity compared to elasticity are 
as follows. 

(1) The stresses in the failure zones do not exceed the 
limit. 

Fig. 4. (a) Yield stress for pressure-dependent (Coulomb) material with associated plastic flow q5 = G = 30”. Plastic strain rate 
i,, is coaxial to the deviatoric shear stress S. (b) c( and p slip-lines are oriented at k (45 ~ d/2) to (~1. 
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(2) The kinematics of failure are taken into account. 
Slip-lines can be interpreted as faults because the 
tangential velocities can be discontinuous across these 
lines. Thus, the theory of rigid-plasticity can predict 
movement for large deformation in contrast to the 
‘elastic’ solution. 

(3) In some cases, it is easier to construct the slip-line 
field or at least a part of it compared to the ‘elastic’ 
solutions, as in the problem of indentation. 

The drawbacks of rigid-plasticity are the following. 

(1) Non-uniqueness of the plastic zone configurations 
occur because the stress in rigid blocks is unknown. In 
problems where the plastic material is severely 
constrained by adjacent elastic material (as in the 
expansion of a thick-walled tube, or in the bending of a 
beam), the geometry of the plastic zone cannot be found. 

(2) Theoretically, pressure-dependent materials must 
dilate during plastic deformation as a result of the 
associativity of plastic flow with an angle of dilatation 
equal to the friction angle $ = 4. However, in materials 
like rocks and soils, the dilatation angle is much smaller 
and even goes to zero after several per cent of strain. 
Thus, the predicted velocity field is not realistic. 

Elusto-plastic non-associatedplasticity 

It is well known that the limiting stress for rocks and 
soils is approximately linearly dependent on pressure 
(Fig. 5a), while the flow in failure zones is close to 
incompressible. This behaviour cannot be described by 
the theory of associated plasticity where the vector of 
plastic deformations is orthogonal to the yield surface 
(Fig. 4a). Therefore, a theory of plasticity, with plastic 
flow independent from the failure envelope, was devel- 
oped (Mandel, 1966) and called non-associated theory of 
plasticity. 

The construction of the slip-line field for a non- 
associated plastic material raises a difficulty: velocity 
slip-lines (i.e. lines of maximum shear strain-rate) should 
be oriented at an angle of 45” to the direction of principal 
stresses, while the stress characteristics should be at an 
angle of i-(45” - #/2). The stress and strain-rate char- 
acteristics do not coincide: the direction in which material 
fails is not the same as that in which material can flow. 
Therefore, this material cannot be treated by the theory 
of isotropic rigid-plasticity (Vardoulakis and Salem, 
1995), and elastic deformations need to be taken into 
account. Another consequence of non-associated plasti- 
city is that the material deforms in a localized manner, 
along plastic shear zones surrounded by elastic material. 

The basic assumption of elasto-plasticity is that the 
total strain-rate, E, is the sum of elastic Ee and plastic 
strain rates Z: 

E = EC + .$. (13) 

Hooke’s law is used for the elastic strain rate, giving 

G 
I 

Shear strain inside band 

W C) 
Fig. 5. (a) Yield stress for a pressure-dependent material with non- 
associated (incompressible) plastic flow Q, = o”, I/I = 30”. (b) Shear band 
localization in a biaxial test (after Vermeer (1990)). The normal stress 
parallel to the band can be discontinuous. Crosses represent orienta- 
tions of principal stresses. (c) ‘Non-associated’ softening due to decrease 

of mean stress inside the shear band. 

rj = Die = D(i - a), (14) 

where D is the elasticity matrix, ir and i: are stress and 
strain rate vectors. In the plane strain conditions and a 
rectangular Cartesian system, the elasticity matrix is 

0 
A+2G 0 , 

2G 1 
where 2 and G are Lame parameters, and the vectors of 
stress and strain rate are 

T 
c = (0.W oyy, .XJT b = (&X, &Y &y) 3 

where the superscript T denotes a transpose. 
In the literature on plasticity, a yield function f is 

commonly employed to distinguish plastic from elastic 
states. For Mohr-Coulomb materials, it can be defined as 
follows (Vermeer and de Borst, 1984): 

f = 5 -p . sin(4) - C. cos(@), (15) 

where 4 and C are the friction angle and the cohesion 
respectively, and r and p are the maximum shear stress 
defined by equation (2) and pressure. Thus, material is in 
an elastic state iff< 0 and in a plastic state when f = 0 and 
f=O. 

In the theory of plasticity, there is no direct relation 
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between the plastic strain and stresses because plastic 
deformations are irreversible and depend on the loading 
history. Instead, a plastic potential function g is intro- 
duced, and the plastic strain rate Z is assumed to be at 
,f= 0 as follows: 

(16) 

where A is a scalar multiplier with no physical meaning. 
One of the suitable definitions of g is 

g = 5 - p sin($) + const, (17) 

where $ is called the dilatation angle. This angle can be 
measured experimentally through the increase in volume 
of sheared rocks. Dilatancy is due to tensile cracking and 
lifting of sliding blocks over asperities. However, this 
angle is relatively small (around IO’), and dilatation goes 
to zero after a few per cent of plastic strain, because rocks 
cannot increase in volume indefinitely. Therefore, we 
assume that ti =O, i.e. that our material is plastically 
incompressible and thus conserves volume. 

In order to express the constitutive model in a matrix 
equation, we substitute equation (16) into equation (14) 
to obtain: 

(If9 

When material is in a plastic state cf= 0), the multiplier A 
can be calculated from the condition that an element 
remains in a plastic state when it yields. This is the 
consistency condition, which can be written in matrix 
notation 

(19) 

The substitution of equation (18) in the consistency 
condition gives 

(20) 

from which A can be found. The stress-strain law can 
then be obtained by substituting A in equation (18) as is 
done in Vermeer and de Borst (1984): 

(21) 

where 

Vermeer (1990) analysed the behaviour of non-asso- 
ciated plastic material subject to biaxial loading (Fig. 5b), 
where horizontal stress gh is kept constant but vertical 
stress cv is allowed to change. The main consequence of 
non-associativity is that in the post-peak regime, the 
material does not deform homogeneously, but bifurcates 

into two states: one where shear bands deform plastically 
and another where material outside of the band unloads 
elastically. This is only possible if the state of stress inside 
the band is different from that outside the band. The 
shear stress r and normal stress perpendicular to the band 
gn are continuous across the shear band, 

Aa,=OAt=O 

as is required by the conditions of equilibrium, while the 
normal stress along the shear band c# can be discontin- 
uous, 

Ag” # 0 n 

where symbol A denotes the difference of stresses outside 
and inside of the band. 

Vermeer (1990) showed that the principal stresses 
inside the band rotate from an angle of (45”-4/2) to 
45” to the maximum compressive stress in materials with 
incompressible plastic flow (i.e. +=O). Thus, coaxiality 
between plastic strain rate and stress inside the band is 
satisfied. This also means that the direction of maximum 
plastic shear strain rate coincides with the direction of the 
band, while the band itself coincides with direction of 
failure in the stress field outside of the band (Fig. 5b). 

Normal stresses parallel to the shear band 0;: decrease 
in the post-peak regime, which causes a decrease of 
vertical stress c,, (Fig. 5c) and is 

(gv 
peak _ aresidual 1 + sin (4) 

1’ v&l = 
1 - sin (4) 

1 + sin (4) + cos (4) - cos2 (4) 

1 - sin ($) + cos (4) - cos2 (4) 

for a shear band oriented at the angle of (45” - 4/2) to g,, 
and a material with II/ = 0. The decrease of stresses due to 
non-associativity of plastic flow is called ‘non-associated 
softening’ (Vermeer, 1990) and it is different from 
material softening in which the Mohr-Coulomb strength 
parameters, 4 and C, are reduced as a function of plastic 
strain, due to damage of the material inside the fault. 

Pros and cons of non-associated plasticity. This is the 
most complete theory of plasticity, which takes into * 
account the Mohr-Coulomb yield criterion, the 
incompressible flow rule and the stress state in elastic 
zones. The theory predicts ‘non-associated’ softening and 
localization of deformations in pressure-dependent 
materials that are well observed in experiments 
(Vardoulakis, 1980; Vardoulakis and Graf, 1985). The 
same effect appears for developed faults and gouge zones 
in nature (Mandl, 1988; Lockner and Byerlee, 1993). 

This type of rheology can be used for numerical 
modeling of faulting. In this approach, it is not required 
to prescribe the geometry and location of faults. They 
naturally appear where stress is concentrated, or at local 
heterogeneities (Hobbs and Ord, 1989; Leroy and Ortiz, 
1989, 1990; Cundall, 1990; Poliakov and Herrmann, 
1994). 
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The difficulties are mostly technical with this type of 

plasticity. 

(1) It is not evident to use the slip-lines method, 
because characteristics of velocity and stresses do not 
coincide. 

(2) Analytical solutions are not practically available. 
(3) The thickness of the localization zone is not 

defined by the physics of the model, and the theoretical 
thickness of the shear band is zero. During numerical 
experiments, it is limited by the size of the elements of the 
computational grid. This means that some of the aspects 
of the problem can be mesh-dependent. However, the 
geometry and qualitative behaviour of numerically 
modeled shear zones should not depend on mesh 
resolution (Pietruszak and M&z, 1981; Bazant et al., 
1984; Needleman, 1988; Sluys and de Borst, 1991). 

Numerical experiments on the problem of indentation 

In order to verify the predictions made in the preceding 
sections, we simulate the problem of indentation in the 
half-space numerically employing all types of plasticity 
considered above. We have used an explicit Lagrangian 
technique similar to FLAC, as developed by Cundall and 
Board (1988) and Cundall (1989), to simulate an elasto- 
plastic two-dimensional medium under the plane-strain 
condition. FLAC is a very powerful technique for 
simulating non-linear rheological behaviour at high 
resolution mesh because it uses an explicit time-marching 
scheme that does not require storage of large matrices, 
which are typical of implicit methods. 

Figure 6(aacl) summarizes our numerical experiments 
of the indentation problem for the three types of 
plasticity discussed above. Only a half of the domain is 
simulated. The die is represented by the application of 
vertical velocities at the left upper corner of the domain. 
Figure 6(a) shows the typical initial stage of deformation, 
which is similar for all rheological models. The left part of 
Fig. 6(a) shows the plastic (i.e. failure) zone in white and 
the elastic zone in black, and the right part shows the 
velocity and strain rate fields. The geometry of the plastic 
zone is similar to the one predicted by the ‘elastic’ 
solution (Fig. 2a) and not by any of the plastic solutions 
(Fig. 2b-d). It would difficult to anticipate such a result 
beforehand, whereas it can be readily explained by 
looking at numerical results. One can see that in the 
initial stages of the penetration of the die, the plastic zone 
is severely constrained by the elastic material outside, and 
the geometry of the plastic zone is controlled by the 
distribution of elastic stresses outside of this zone. Thus, 
in the theory of rigid-plasticity, neglecting the distribu- 
tion of stresses outside of plastic zone fails to predict this 
result. On the contrary, the ‘elastic’ solution gives a 
qualitatively correct prediction (Fig. 2a) because the 
stresses in the failure zone are not far from the yield 
stresses for small deformations. 

However, the situation becomes different as deforma- 

tions increase. Figure 6(b & c) shows numerical solutions 
for associated pressure-independent (4 = 0“) and pres- 
sure-dependent (4 = 30”) plasticities, respectively, which 
are very similar to the analytical rigid-plastic solutions 
(Fig. 2bd). One can also see that our numerical solution 
is closer to the Prantdl type than to Hill type, probably 
because our boundary conditions are kinematic and not 
in stresses. The case of non-associated plasticity (Fig. 6d) 
is the most interesting because it was difficult to predict 
theoretically. One can see that this solution is a mixture 
between the previous two: while slip-lines under the die 
resemble the case with 4 =30”, they come out at the 
surface as in the case with 4 = 0. This is not a coincidence. 
The zones of localization in non-associated plasticity 
should form in between the velocity and stress slip-lines, 
which are solutions for associated plasticity when 4 = 0” 
and 4 = 30”, respectively. We also found an agreement 
between the calculated and predicted critical loads 
(equations (9) and (12)) while the non-associated 
plasticity case gave a result close to equation (12). The 
last solution can be explained by comparing the ‘com- 
plete’ solution of Bishop (1953) and the plot of elastic and 
plastic zones in Fig. 6(e). ‘Complete’ solutions consist of 
all possible solutions for stress slip-lines without con- 

sideration of the kinematics of plastic flow (Fig. 6, left). 
Our result (Fig. 6, right) shows that plastic zones are 
similar to some parts of the ‘complete’ solution. How- 
ever, the deformations in deep failure zones under the die 
are very small because they are hindered by the 
surrounding elastic material. The majority of deforma- 
tions are accommodated along curved shear zones 
connected to the free-surface because the slip along 
these zones is not affected by the surrounding media. 

These results demonstrate that ‘elastic’ solutions 
predict the geometry of failure zones fairly well when 
plastic deformations are comparable to the elastic ones, 
and/or when a failure zone is constrained by the elastic 
material outside the zone. The theory of rigid-plasticity 
correctly predicts the geometry of the failure zones for 
large deformations, when a plastic zone is connected to a 
free surface. Non-associated elasto-plasticity gives the 
most complete solutions, with failure zones evolving with 
time. However, the combination of ‘elastic’ and ‘rigid- 
plastic’ approaches can qualitatively predict the right 
mode of failure. 

COMPRESSION WITH A BASAL SHEAR 

The geometry and evolution of faults in thrust sheets 
and accretionary prisms are not yet completely under- 
stood. This problem is related to ‘the paradox of large 
overthrusts’ (Price, 1988): how is it possible to displace a 
long and thin thrust sheet as a coherent unit over a 
frictional surface by pushing it from behind? The 
maximum length of the thrust sheet along which it is 
possible to move is limited by the strength of the rock. A 
simple estimation of this length for a rectangular block 
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a) Initial stage 

ll) qb=o,+=o 

Advanced stage 

e) Complete solution 

d) q5 = 30, $ = 0 

Fig. 6. Numerical verification of analytical predictions of indentation in an elasto-plastic material. Only right-half of the 
problem is shown due to symmetry. The top surface is stress-free, and a vertical velocity is applied on the top. Bottom and right 
boundaries are free-slip. We have chosen Poisson’s ratio v=O.2.5, Lame’s parameters i= G= 3.10’” Pa for all numerical 
experiments in the paper. (a) Initial stage of indentation is independent of friction angle and dilatancy. Left figures show that 
geometry of plastic zone (grey) embedded in elastic material (white) is in agreement with the ‘elastic’ prediction in Fig. 2(a), 
Velocity field and strain rate fields are shown on the right. (a) and (b) large deformations solutions for associated (4 = $ = 0) 
(b) and (c$ = $ = 30”) (c) plastic materials are in agreement with Prantdl’s solutions (Fig. 2b & d). (d) Solution for a material 
with ‘non-associated’ flow rule (4 = 30”, I++ = 0) is a mixture of the two previous solutions with associated how rule. (e) Left: the 
complete analytical solution proposed by Bishop (1953) for associated plasticity with C#I = 0. Right: a snapshot of numerically 

obtained plastic zones (grey) for non-associated plasticity (d, = 30” and $ = 0). 
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pushed from the rear gives values that are orders of 
magnitude below those observed in nature (Hubbert and 
Rubey, 1959; Jaeger and Cook, 1969). Currently, there 
are two non-mutually exclusive explanations: (a) pore 
fluid pressure at the base of a thrust effectively decreases 
the friction force (Hubbert and Rubey, 1959); and (b) a 
thrust with a wedge geometry can be at yield stress in all 
its parts and thus move as one unit (Chapple, 1978). The 
extension of his theory for a pressure-dependent plastic 
material was worked out by Davis et al. (1983) and 
Dahlen (1990). Here, we proceed in the same way as in 
the previous section, showing elastic, rigid-plastic and 
elasto-plastic solutions for both rectangular and wedge 
geometries of a thrust sheet. 

block of horizontal dimension L (Fig. 7a) in a gravity 
field. The pushing force applied at the left boundary of 
the block is in equilibrium with the shear stress at the 
bottom. Assuming that shear stress oXy linearly changes 
with depth, one can find a simple stress field satisfying the 
equations of equilibrium, 

0X.X = pgy + c(x - L) 

flPY = PU (22) 

crxy = -cy. 

Elastic solutions 

For different values of c, one can find the part of the 
domain where shear stress exceeds the yield stress 
(equation (1)) and predict the direction of failure zones 
as lines oriented at +(45” - 4/2) to the direction of 
maximum compressive stress (Fig. 7a). 

Rectangular geometry. Hafner (195 1) was probably the Wedge geonzetry. A typical example of an application 
first to apply the theory of Anderson for calculation of of an ‘elastic’ solution for fault prediction for 
fault pattern in a thrust zone. Consider a rectangular accretionary prisms is shown in Fig. 7(b) (after Yin 

Predictions by theory of Elasticity 

Predictions by theory of associated rigid-plasticity 

Fig. 7. Analytical solutions for faulting in a thrust zone. (a) Trajectories of potential faults (solid lines) from Hafner’s solution 
(Hafner, 1951) for compression of an elastic rectangular block with a basal shear. Dashed lines bound predicted zones of 
failure for different values of the basal shear (c = 0.2 pgH and pgH). (b) Y in’s solution (Yin, 1993) for a particular stress 
distribution in compressed elastic wedge. (c) Slip-lines in a block pushed above a base of strength k. The left boundary is shear- 
stress-free. (d) The same as (c) with the shear stress, k, applied at the left boundary. Note curved ‘listric’ slip-lines in this case 
compared to the straight slip-lines in (c). (e) Solution of Prantdl (after Hill (1950)) for the compression of a rigid-plastic block 
with strength k between two rough plates with cohesion k. Note curved slip-lines (cycloids), and an increase of vertical stress 
from right to left. (f) Fault trajectories in a cohesionless rigid-plastic wedge (4 = @ = 30”, C=O) pushed over a frictional base 

(after Dahlen (1984)). 
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(1993)). Here, the author assumed the following 
distribution of stresses in the wedge, 

o- - kgx + kdy + kg + pgx . sin a IX - 

fJry = -pgy . cos CI 

gxJ. = -k3y. 
(23) 

The three parameters ki were freely varied to obtain 
‘paradoxical’ fault geometries. There are thrust faults at 
the toe of the wedge and normal faults in the rear of 
wedge. This is the result of an arbitrarily chosen elastic 
stress field, due to unjustified stress boundary conditions. 
For example, in the case shown in Fig. 7(b), basal friction 
is greater than the internal friction in the wedge, shear 
stress changes sign along the bottom depending on the 
length of the wedge, and terms k8 and k4 ambiguously 
describe compressive stress coexisting with extensive 
stress. While Yin assumed a Mohr-Coulomb criterion 
for directions of failure zones, he delimited the unstable 
zones by a maximum shear stress cut-off of 50 MPa, 
independent of the pr9ssure. Several examples of other 
inappropriate applications of ‘elastic’ solutions to the 
problem of faulting are discussed by Buck (1989) and 
Wills and Buck (1997). 

Plastic solutions 

Rectangular geometry. Let us apply the slip-line theory 
for the problem of the sliding of a plastic rectangular 
block on a base with cohesive strength k and friction 
angle 4 = 0 (Fig. 7c & d). If there is no shear stress applied 
to the left boundary and only a normal horizontal stress, 
the slip-lines are at 45” to the boundary and form a 
triangle (Fig. 7~). If the shear stress, k, is applied to the 
left boundary, then the boundary becomes a slip-line 
itself, changing the slip-line field to the configuration 
shown in Fig. 7(d). It is interesting to note the application 
of shear stress at the curving left boundary faults, 
compared to the shear-stress-free boundary condition 
that gives straight faults. This simple example shows that 
it is impossible to move the rectangular block as a unit by 
a simple push from the rear. 

Let us find a condition when the entire block will be at 
yield stress and thus flows plastically. One of the 
possibilities is a compression of a block between two 
rough plates (Fig. 7e). The horizontal dimension of the 
problem is assumed to be larger than the height H. The 
solution for the pressure-independent material with 
cohesion k was given by Prantdl. The stress distribution is 

where c = k/H (Hill, 1950). Stresses at the boundary of the 
domain are shown in Fig. 7(e) as well as slip-lines, which 
are cycloids. The bottom half of the problem may 
represent a thrust pushed from the left which slides at 

the lower surface with basal friction k. One can see that 
the necessary condition to render the whole block plastic 
is the linear load at the surface, which may be represented 
by topographic slope. It is interesting to notice that the 
cycloids may represent curved ‘listric’ faults. Examining 
Fig. 7(d & e), one can conclude that faults are curved if 
the bottom boundary is a slip line. This also means that 
the friction angle of the base should be equal to that of the 
wedge. 

Wedge geometry. Following the idea of Chapple 
(1978) Davis et al. (1983) considered a thrust with a 
geometry of a wedge (Fig. 7f), which is at the verge of 
plastic failure. Dahlen (1984) found an analytical 
solution for the equilibrium of a cohesionless Coulomb 
wedge, which is bounded by a plane of weakness from 
below. It was assumed that the stresses gyL. and ox” acting 
at the plane parallel to x are caused only by the-gravity 
force (Terzaghi, 1943) 

a,, = pgy cos (a) gXJ = -pgy sin (a), (24) 

where g is the acceleration of gravity and p is the density 
of the wedge. It is easy to see that these stresses satisfy 
equilibrium conditions 

g + !!YYI + pg sin (M) = 0 
ay 

aa,, + 2 _ pg (-0s (a) = 0, 
ay 

(25) 

and the following conditions are fulfilled 

This means that the stress does not change at the line 
parallel to axis x, and the orientations of principal 
stresses are the same everywhere in the wedge. Thus, a 
non-cohesive critical wedge is self-similar in the sense that 
a magnified version of any portion of it near the toe is 
indistinguishable from the wedge as whole. This is a 
consequence of the absence of an inherent length scale in 
the equations of equilibrium and in the boundary and 
failure conditions (Dahlen, 1990). Slip-lines also have the 
same directions everywhere in the wedge, being oriented 
at + (45” - 4/2) angles to rrl (Fig. 7f). 

Dahlen (1990) gives an approximate solution for the 
equilibrium of a wedge with a narrow taper (a(<l, fi<l), 
which is appropriate for most of the thrusts in nature. If 
the coefficient of friction at the base is ph and the 
coefficient of pore pressure in the wedge and at the base 
are /z and &,, respectively, then 

cl+p= B + Pdl - hl) 
1+2(1 -n)sin(4)/(1 - sin4)’ (27) 

This equation shows that the critical taper (cc+ fl) is 
increased by an increase in the coefficient of basal friction 
pb or an increase in the coefficient of pore pressure 2, 
whereas it is decreased by an increase in the internal 
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Advanced stage 

C) 

Fig. 8. Numerical modelling of Hafner’s problem (Hafner, 1951) for elasto-plastic material (4 = 30”, i =o” and C= 20 MPa). 
The simulated region is 10 km high and 30 km long. Kinematical boundary conditions are given by equation (22). Left figures 
show velocity field and strain rate at initial (a) and advanced (c) stages. Plastic (grey) zones (b) and(d) are shown on the right 

and resemble elastic (Fig. 7a) and rigid-plastic (Fig. 7d) analytical predictions. 

4 

friction angle b, or increase in the coefficient of pore 
pressure at the base &,. 

Numerical solutions 

Rectangular geometry. It is not always simple to 
compare elastic and plastic solutions for the same 
problem due to differences in application of boundary 
conditions. Elastic solutions considered here are 
formulated with stress boundary conditions, whereas, it 
is difficult to apply the same stresses for a plastic material. 
These stresses may be above the yield stress, making the 
problem ill posed. It is more practical to apply velocity 
boundary conditions for plastic problems, so that 
material is gradually loaded by deforming boundaries 
allowing a gradual growth of plastic zones. Therefore, in 
order to compare the ‘elastic’ solution of Hafner with an 
elasto-plastic solution, we expressed the stresses from 
equation (22) in terms of velocities. If one assumes that 
shear stress cXY grows linearly with time, then it should be 
compensated by an increase of normal stress cXX as 
follows from the equation of equilibrium, 

axy(t) = c y t oxx(t) = -c . x t, 

where c is the rate of the stress increase chosen from 
consideration of numerical stability and t is time. One can 

integrate these equations to obtain the velocity field V,, 
V, corresponding to this loading: 

v, = A ’ c . ($L.x)+(B+.g (28) 

v,=-B.c.(x-L).y 

A+2G 

A = 4G(A + G) 
B= 

A 

4G(A -t G) ’ 

and G Lame 
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Model set up 

L=2ookm 

b PSY 
km 

Elasto-plastic wedge: Plastic strain and Displacement field 

Initial stage at Displmax = 3.Xe+O2m 

Advanced stage at Displmax = 6.Oe+O3m 

b) 

4 

Topography at Advanced stage 
8oo~r-------~~ 

Fig. 9. Numerical modelling of faulting in a frictional cohesionless wedge. (a) Numerical setup. Constant horizontal velocity 
and zero shear stress applied on the left border and hydrostatic stresses on the right. Upper surface is initially horizontal (K = 0) 
and stress-free. The base is inclined at the angle /I = 6”. Friction angles in the wedge (4) and at the base (&,) are 30”. Coefficients 
of fluid pore pressure are 1. = ib = 04. Two snapshots corresponding to the displacement of the left border for 38 m (b) and 
6 km (c) demonstrate the development of the Failure zone from the upper surface to the base. The slope increases to the critical 
value and then the wedge starts to slip as a whole, simultaneously deforming internally. (d) Topography has an average critical 

slope of 5“ and a bulge of 200 m on the right side due to a local thrust. 

in Fig. 9(a). The parameters of the problem were chosen 
as follows: the slope of the base /I is 6”, the top surface is 
initially flat (X = 0), the coefficient of pore pressure ;1= 0.4 
for the base, and the angle of friction for the wedge 
C#J = f (45”- 4/2). Figure 9(b & c) shows the evolution of 
plastic zones with time. At the initial stage (Fig. 9b), only 
the rear part of the wedge slides and the geometry of the 
plastic zone are similar to that predicted by Hafner’s 
solution for a rectangular block (Fig. 7a) for c = 0.2 ngy. 
As loading continues, the zone of plastic deformations 
increases laterally and vertically, until the slope of the 
wedge builds up such that the whole block starts to slide 
(Fig. SC). We found that the theoretical prediction of the 
wedge taper (equation (20)), which predicts a value of 
x = 5.75”, is in agreement with that obtained numerically 

((x = 5”) by measuring the average topographic slope in 
Fig. 9(d). 

Although the theory of Dahlen (1984) gives a very 
good estimation of the average slope, it does not tell us 
about the evolution of faults with time. It can be seen 
from the numerical experiments that faults are not stable 
and that active faults jump from one place to another, 
because the stress distribution in the thrust is not uniform 
and changes in time. This is because slip at any fault is 
resisted by gravitational forces and is not kinematically 
compatible with slip along the base. Therefore, active 
faults constantly change their positions, creating a 
complex, evolving network of faults accommodating the 
bulk deformation of the thrust sheet. However, if the 
critical surface slope (x is reached, movement of the entire 
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“Elastic” prediction 
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Fig. 10. Prediction of faulting due to bending. (a) Numerical setup: vertical borders are free-slip, and upper surface is stress- 
free. The bottom boundary is shear-stress-free and subjected to a sinusoidal velocity. Angle of friction q5 is 30” and cohesion is 
5 MPa. Potential zones of failure (white color) and trajectories of faults in elastic material are shown for two displacements of 
bottom boundary 22 m (b) and 88 m (c). Elasto-plastic solutions (d and e) for the same amounts of maximum displacements of 
22 and 88 m. Plastic shear bands (in grey) terminate at the boundary with elastic domain, and thus elasto-plastic solution 
closely resembles the elastic one. Note that at the later stage, the top zones of failure are disconnected from the bottom ones, 

contrary to the elastic predictions. 

thrust wedge can occur without internal deformations, same order as the thickness of a plate) was studied in 

while the whole wedge is at critical stress. order to predict low-angle faulting under particular 
boundary conditions (Hafner, 1951; Sanford, 1959; 
Spencer and Chase, 1989). One can find a discussion on 

PLATE BENDING prediction of low-angle faulting due to flexural stresses in 
Wills and Buck (1997). 

Faulting in plates due to bending is an important Here, we consider plate bending under loads with a 

problem in geophysics. The distribution of stresses in wavelength considerably longer than the thickness of the 
thick plates (i.e. with characteristic dimensions of the plate (Fig. 10a). Thus, our results can be interpreted in 
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terms of thin plate theory (Timoshenko and Woinowsky- 
Krieger, 1959; Turcotte and Schubert, 1982), which is 

-1 fairly accurate for many geophysical applications. It can 
- be shown that shear stresses in thin plates and at small 

V deflections are considerably smaller than normal stresses. 
Thus, the directions of principal stresses are very close to - 
horizontal and vertical, and faults will be formed at 
f (45” + #/2) to the surface in zones of extension and at 

Model Setup 

- 

V 

a) 

“Elastic” potential faults 

b) 

Rigid-plastic slip-lines around a crack 

c 
V 

c) 

f (45” - 4/2) in zones of compression. The geometry of 
failed zones then depends on the geometry of loading and 
is controlled by the stresses in elastic parts of the plate. 
Thus, bending of a thin plate is an example where an 
‘elastic’ solution may provide a good guide for geometry 
of faulting. However, the theory of rigid-plasticity cannot 
predict the geometry of plastic zones, because stresses 
outside the plastic zones are not calculated. Therefore, 
here we compare only ‘elastic’ and ‘elasto-plastic’ 
numerical solutions, without considering the ‘rigid- 
plastic’ case. 

We apply a sinusoidal vertical velocity at the bottom 
with zero shear stress (Fig. lOa): 

2lZx 
l$(y = H) = v, cos ~ ( > L 

t(y=H)=o, 

free slip at lateral boundaries and free-stress boundary 
conditions at the surface. Figure lO(b & c) demonstrates 
white zones where elastic stresses exceed the yield 
condition and thus potential zones of failure for two 
vertical displacements I’,. The results of bending of an 
elasto-plastic plate are shown in Fig. lO(d & e). One can 
see that the ‘elastic’ solution predicts very well the zones 
of failure and the directions of failure for deflections in 
the order of 50 m, and less successfully for larger 
displacements. The slip along individual faults cannot 
be large, because faults terminate at the boundary with 
intact material; therefore, active faults change their 
position as in the example of the thrust wedge. In this 
way, the slip on numerous closely spaced discrete faults 
accommodates bending. 

Elasto-plastic solution This example shows us again that for small deforma- 
tions, and when the failure zones are tightly constrained 
by elastic material, ‘elastic’ solutions (Fig. lob & c) 
predict fairly well the intergrated effect of slip on 
individual faults. At larger strains, a single fault may cut 
through the entire plate. The transition from bending on 
distributed faults to breakage by a single fault is studied 
by Buck (1997). 

Fig. I I, Prediction of faulting around a dike. (a) Numerical setup: 
constant lateral velocities, stress free upper boundary, Winkler’s 
foundation at the bottom, hydrostatic pressure in the dike and no 
density contrast between the solid and fluid phases. (b) Prediction of 
faulting by theory of elasticity. The zone of failure (in white) is 
embedded in elastic material around (grey). Trajectories of potential 
faults are sub-horizontal at the tip of the dike. (c) Slip-line pattern 
predicted by pressure-independent associated plasticity around a mode- 
I crack. A rigid triangle above the crack slides along straight slip-lines 
inclined at 45” to the free surface. (d) Velocity field and accumulated 
plastic strain obtained by numerical simulation of the problem in an 
elasto-plastic material. This solution is in agreement with the ‘slip-line’ 

FAULTING AROUND A DIKE 

solution. 

Parsons and Thompson (1993) proposed an idea to 
explain the low-angle faulting in the Basin and Range 
Province as a result of extension in a zone of active 
magmatism. They suggested that the stress distribution in 
the elastic media around a dike (adopted from Pollard 
and Segall, 1987) favours low-angle faulting. We repro- 
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“ELASTIC” PREDICTIONS 

Ep fault z & yield 

Slip along potential fault is hindered 
by boundary of failure zone 
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Boundary of failure zone is a slip-line 
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Fig. 12. Fault patterns for small (left column) and large (right column) deformations for the problems considered in the paper 
(from the top to the bottom): indentation of a die into a half-space, thrusting with basal shear, extension due to bending (left) 
and stretching (right), influence of a dike on normal faulting. Elastic solutions predict faulting correctly for zones of failure 
constrained by surrounding elastic material. Rigid-plastic solutions give correct predictions when failure zones are bounded by 

a slip-line that is connected to the free-surface or a zone of weakness. 
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duce an ‘elastic’ solution with the following boundary 
conditions: a stress free upper boundary, hydrostatic 
pressure at the bottom (Winkler’s foundation), constant 
velocities applied at the lateral boundaries and hydro- 
static fluid pressure in the dike (Fig. 1 la). There is no 
variation of densities between solid rock, magma and 
inviscid substratum. 

Directions of potential faults predicted by elasticity are 
shown in Fig. 1 l(b). One can see that low-angle faults 
may appear in small zones around the tip of the dike. 
They terminate in the surrounding elastic media and 
cannot accommodate large displacements. This point is 
also discussed by Wills and Buck (1997). 

We have also constructed a slip-line field around a 
mode-1 crack in a pressure-independent rigid-plastic 
material (Fig. 1 lc). This solution cannot be directly 
compared to the studied case, because it does not take 
into account the gravity forces and dependence of the 
yield stress on pressure, but it gives an idea of how faults 
can be formed. We modified the classical solution for a 
mode-1 crack (e.g. Kachanov, 1974; Unger, 1995) to take 
into account the upper free-surface. First, we constructed 
three triangles ABC, FDC, FEC that are adjacent to 
shear stress free boundaries: the upper surface and a 
crack. Thus, slip-lines are straight in these domains, and 
they move as rigid blocks. Two zones, ACD and BCE, 
make the rest of the slip-line field. It can be seen that this 
problem is similar to Prantdl’s die solution; therefore, the 
limiting stress in the zone ACB is also given by the 
equation a.,=k(~+2) (Unger, 1995) where k is the 
maximum shear stress. The velocity field can be con- 
structed following the rules that the normal component 
of velocity is continuous across slip-lines and should 
equal the velocity of a rigid block, while the tangential 
component may be discontinuous. We constructed the 
following velocity field: the block ABC moves down- 
wards as one unit with constant velocity V and two 
domains ADFC and BEFC moves as one unit laterally 
with the same velocity. Velocities are discontinuous 
across the lines AC and BC which can be potential 
faults. The jump in tangential velocities equals 2,/2 k”. 

We also modelled numerically the problem shown in 
Fig. 1 I(b) using a Mohr-Coulomb elasto-plastic mate- 
rial. Figure 1 l(d) clearly shows two normal faults 
connecting the tip of the dike with the free surface as 
predicted by rigid-plastic theory. The slip along these 
faults eliminates the possibility of low-angle faulting. 
This example shows that prediction of faulting by ‘elastic’ 
solutions may be erroneous if the kinematics of potential 
faults is not taken into account. 

CONCLUSIONS 

In this paper, we applied several simple approaches for 
fault prediction to some idealized geological problems. 
Comparison of these results reveals the strength and 
limits of each method, and these are compiled and 

summarized in Fig. 12, to draw general conclusions. 
The left column of Fig. 12 shows a sketch of the faulting 
predicted from ‘elastic’ solutions. The right column 
shows the same problems resolved by using the theory 
of plasticity (except for the problem of bending, which is 
replaced by uniform tension). 

The ‘elastic’ solutions (Fig. 12 left) predict zones of 
failure reasonably well under the following conditions: 

(1) The stress field is close to the yield stress, in other 
words, strain on potential faults c,ris of the same order as 
the limiting Strain t‘yield. 

(2) Zones of failure are severely constrained by 
surrounding elastic material. 

(3) Lines of failure are terminated at the boundary 
between intact and failed material. 

The theory of rigid-plasticity (Fig. 12 right) is appro- 
priate for the following reasons: 

(1) Slip along failure zones can accommodate large 
deformation Ef>>&yjerd; 

(2) Zones of failure are bounded by a slip-line which 
allows material to deform in a failure zone which is 
somehow detached from the material outside; 

(3) Lines of failure do not terminate in surrounding 
intact material, and/or they are connected to a free 
surface, a viscous substratum or a zone of weakness. 

In contrast to the theories of elasticity and rigid- 
plasticity, the theory of elasto-plasticity allows modelling 
of the initiation of failure as well as large deformations 
along faults. Additionally, this method describes the 
complex spatio-temporal evolutions of faulting. Figures 
6(e), S(c) and 9(c) give a taste of how more realistic faults 
can be modelled, different from those predicted by the 
simpler theories. 
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